
N-point matrix elements of dynamical vertex operators of the higher spin XXZ model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 5831

(http://iopscience.iop.org/0305-4470/28/20/015)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 01:03

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 28 (1995) 5831-5842. Printed in the UK 

N-point matrix elements of dynamical vertex operators of 
the higher spin X X Z  model 

A H Bougourzii 
Centre de Recherches Mathematiqes. Universite de Moneal, CP 6128-A, Montreal, Quebec 
H3C 3J7, Canada 

Received 2 December 1994 

Abstract. We extend the wncept of conjugale vertex o p e n "  first introduced by Dotsenko 
in the case of the bosonization of the SU(2) conformal field theory, to the bosoniwtion of the 
dynamical vertex operators (type I1 in the classification of the Kyoto school) of the higher spin 
XXZ model. We show that the introduction of the conjugate vertex operators leads to simpler 
expressions for the N-poinl matrix elements of the dynamical vertex operators. that is, without 
redundant Jackson integrals that arise from the inserlion of screening charges. In particular, the 
two-point matrix element can be represented without a n y  integral. 

1. Introduction 

It is now well established through the work of the Kyoto school that the XXZ quantum 
spin chain with local spins equal to $k  has the quantum affine algebra U,(ŝ uQ)) with level 
k as a non-Abelian symmetry; q being a deformation (anisotropy) parameter [ 1-31. The 
dynamical symmetry of this model is generated by the dynamical vertex operators (referred 
to as type I1 vertex operators in 11-31) which create non-degenerate eigenstates of the X X Z  
Hamiltonian by a successive action on a given eigenvector, for example the vacuum. A 
dynamical vertex operator has two main properties: it intertwines the U,(s^u(2)) modules 
and canies spin 4 [3]. 

Important mathematical and physical quantities in this model is the N-point matrix 
elements of the above vertex operators. There are three known ways to compute these 
matrix elements exactly, at least in principle. The first one is by solving the q-U equation. 
Indeed, it has been shown in [41 that these vertex operators satisfy a difference equation, 
which is the q-analogue of the usual KZ equation in conformal field theory. The second 
one consists of deriving a normal ordering of the modes of the vertex operators that is 
compatible with the Zamolodchikov-Fateev algebra they satisfy. With this normal ordering 
one can then in principle compute any matrix element. The third one consists in realizing the 
vertex operators in terms of bosonic modes satisfying Heisenberg algebras. Since the normal 
ordering of the latter modes is very simple, one can use it to compute matrix elements. 

In practice however, the first two methods are hardly useful beyond the two-point matrix 
elements because of highly technical complications, whereas the third one, though more 
useful and systematic, also raises the following problem: a single vertex operators might 
have several independent realizations in terms of bosonic modes. Equivalently, a given 
U,(s^u(2)) representation might be identified with several Fock spaces with different bosonic 
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charges (eigenvalues with respect to the centre of the Heisenberg algebra). Therefore, it is 
not trivial which combinations of these realizations of the vertex operators and Fock spaces 
are going to lead to the right matrix elements. This problem has been addressed in the 
context of the bosonization of conformal field theory through two different approaches [5], 
which we extend to the case of U q ( S ( 2 ) )  algebra. The first one consists of singling out 
only one particular realization, say the simplest, for the vertex operators and then attaching 
an appropriate number of screening charges to these vertex operators so that the resulting 
operator is a map connecting to the two Fock spaces between which we aim to compute the 
matrix elements. This amounts to fixing the same bosonic charge (picture fixing) for both 
Fock spaces realizing a U,(S^u(Z)) representation and its dual. The main disadvantage of this 
method is that the final expressions for the matrix elements involve in general redundant 
integrations coming from the screening charges. The second method, which is due to 
Dotsenko (in the classical case i.e.. q = 1) [5], consists of deriving all possible independent 
bosonizations of the vertex operators. Then one should single out two among them such 
that the two-point matrix element can be computed as the expectation value of the product 
of the two (i.e., each one of them is inserted once) and without the insertion of screening 
charges. This is equivalent to fixing two different bosonic charges: one for the Fock space 
realizing a Uq(S^u(2)) representation and the other for the Fock space realizing its dual. 
This is the reason why Dotsenko refers to one of them as a vertex operator and the other 
one as its conjugate vertex operator, i.e.. they create respectively a representation and its 
dual space. From this bosonic realization of the two-point matrix element one reads off the 
conservation law of the bosonic charges. This conservation law must be obviously satisfied 
in the N-point matrix elements otherwise one must again insert the minimum number of 
screening charges in the matrix elements to make it so. This second method has the main 
advantage of avoiding unnecessary redundant integrations in the integral representations of 
the matrix elements obtained through bosonization. 

So far only the first method has been applied in the computation of matrix elements 
of the dynamical vertex operators of the spin i k X X Z  model [6]. In this paper, we apply 
the second method to the computation of these N-point matrix elements. In section 2, we 
briefly review the Uq(s^u(2)) algebra and its bosonic realization. In section 3, we recall 
the definition of the dynamical vertex operators as intertwiners of U,(s^U(Z)) modules. The 
bosonization of these vertex operators are derived by solving the intertwining relations they 
satisfy with the Uq(s^u(2)) algebra, which is already in a bosonized form. We show that 
here also there are two independent solutions, just as in conformal field theory [SI. One 
of them has already been derived in [6],  whereas the second one is new. We refer to the 
first solution as the vertex operator and to the second as the conjugate vertex operator. In 
section 4, we show how the N-point vacuum-to-vacuum mahix element can be computed 
without a redundant integration if both the vertex operators and conjugate vertex operators 
are used simultaneously. As an explicit example, we compute the two-point matrix element 
in a non-integral form and show that it satisfies the q-Kz equation. Finally section 5 is 
devoted to our conclusions. 

2. The U,(G(2))  algebra and its bosonization 

The associative initial U q ( S ( Z ) )  algebra is generated by the elements [E,'(. E Z), H,(m E 
Z (01, K*', y*I/*}, with the following defining relations [7]: 
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I t  , I  y i y - i  = y - ry I  = 1 

where y 1 l Z  is in the centre of the algebra and acts as 4'1' on level k highest weight 
representations of Uq(S;(2)), and @" and pn are the modes of the fields @ ( z )  and p(z) 
defined by 

As usual, [XI is defined by [XI = (ql -q-x)/ (q -q- ' )  and q is the deformation parameter. 
The above algebra is a Hopf algebra with the following comultiplication: 

m-1 
A(E?,,) = E:,, @ y-"' + K-' @ E$ + c y  (m-i)/Z p-,+i @ yi-"'Ezi mod N- @ N: 

i=O 

where m > 0, n 0, and N* and N: are left Q[y*. em, v-"; m, n E Z&nodules  
generated by {E:; m E Z) and {E$E:; m , n  E 2) respectively [8]. This comultiplication 
will be useful in deriving the intertwining properties of the vertex operators. 

Let us now briefly review the bosonization of Uq(Gi(2)) for arbitrary level k. We need 
three deformed Heisenberg algebras generated by the elements (a;, j = 1.2,3; n E Z), to 
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which we adjoin the elements uj, j = I ,  2.3,  and with the following defining relations [9] :  

and where 

(2.4) 

The bosonization of U,(s^u(2)) is given by 191 

where z is a complex variable and 
E*(Z) = x.E;z-n-* 

x2(2) = S2Z(k, I: 110, - ik ,OI  t 12) 

"€2 

X',*(Z) = R1(k, 1; 110, ~ i k / 2 , 0 1 +  lz) 

~ ~ ( 2 )  = Q3(Z 1; 110,0, k t 21 + 12). 

Here, we have used the notation 

Rj(L1, Lz ,  .. . , L,; Mi ,  Mz, ... , M s ,  l ~ , ~ l , P l *  Iz) 
L,Lz . .  . L, 

M I  M z . .  . M,I 
- -U' - ia; In(kzq') + i 

(2.7) 

(2.8) 

where L t ,  Lz.. . . L,, M I ,  Mz, _. . , M,, 0 ,  (Y and f i  are parameters related to the q- 
deformation. 

3. Bosonization of the dynamical vertex operators 

Here we consider the bosonization of the dynamical vertex operators and introduce the 
concept of their conjugate vertex operators. These vertex operators are referred to as type I1 
vertex operators in [3]. They map the U,(S^u(Z)) modules in the following way: 

(3.9) $:(z) : V(Aj,) -+ V'(Z) C4 V(Aj2) 
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where V ( A j )  are level k highest weight Uq(s^u(2))-modules and (Aj  = (k - 2j)ho + 
2 j h l ,  j = 0,. . . , k / 2 )  and (ho, A I ]  denote the sets of Uq(s^u(2)) dominant highest weights 
and fundamental weights respectively. V J ( z )  is the k = 0 'evaluation representation' 
of Uq(s^u(2)). It is isomorphic to V j  Q C[z, z-'1, where V j  is the 2 j  + 1 dimensional 
representation with the basis (uA, - j  6 m < j ) ,  and is equipped with the following 
U,(s^u(Z))-module structure: 

(3.10) 

with U; being identically zero if Iml > j .  
Let us introduce the rescaled vertex operators &;>j,"(z) as 

@;, jz (z )  = z ( 4 - A ~ I ) & ! j 2 ( z )  JI (3.11) 

where A, = j ( j  + l ) / ( k  +2). The latter vertex operators are defined to obey the following 
intertwining relations [4,3]: 

&!,:!l"(z) o x  = A ( x )  o 6ib(z) Vx E U,(s^U(Z)) (3.12) 

where A is the comultiplication given in (2.3). We define the components &(z) of these 
vertex operators as 

(3.13) 

where the normalization function g:,"(z) is to be determined so that 

&Y,;:l"(z)iAjl) = 112,) + ,  . , (3.14) 

with IAj,) and IAj2) being the highest weight states of V ( A j , )  and V ( A h )  respectively. 

N*u! E C[z, z-']uL,,, we get the following commutation relations: 
Using relation (3.12). the comultiplication (2.3), and the fact that N + d j  = N-U! = 0, J 

[E;, @ij(z)l = o n E z (3.15) 

(3.16) 1 H a , 4 ! j ( z ) ~  = -qk(n-'n'/2)-z # - j ( z )  

(3.17) 

[WI , 
4% 

n E z\{o) 
I - -2j j K$,ij(Z)K- - q  56-j(z> 

where the quantum commutator [A, B], is defined by 

(3.18) 

[A, B ] ,  = A B  - x B A .  (3.19) 
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As in the case of type I vertex operators [lo], the system of equations (3.15H3.17) has 
two independent solutions for @ L j ( z )  in terms of the bosonic Heisenberg elements (2.4). 
We denote them respectively by q f j ( z )  and JLj(z).  They are given by 

where 
F ' ( z )  = Q'(2, k; Z j Ik ,  - ik ,  -kl - 12) 

e2(z )  = Q2(k t 2, k, 1; 2j, k + Ilk, - i k ,  -kl - lz) 
f 2 ( z )  = Q2(k +2, k;  k - 2jlk.  -fk, -kl - 12) 
$'(2) = Q3(Z, 1; Zjlk, 0,21- 12). 

(3.21) 

The components @i(z) and $;(e) are derived from @L,(z) and $ i j ( z )  through (3.18). 
Henceforth, we will refer to &z) and $A(Z) as vertex operators and conjugate vertex 
operators respectively. 

Let us now define the Fock spaces on which the above operators are acting. A left Fock 
module F(nl ,  n2. n3) and a right Fock module & I .  n2, n3) labelled by the integers nj,  nz 
and n3 are defined by 

where FT are respectively generated by [U;., a;", a$n, , n > 0). The states In], n2, n3) and 
( n l ,  n2, n31 are defined by 

where the vacua states IO) = IO, 0,O) and (01 = (O,O, 01 are such that 

atlo) = 0 
@[at, = 0 

n > 0. i = 1,2,3 
n < 0. i = I ,  2 ,s .  

(3.24) 

From the intertwining relations (3.15H3.17) it  is clear that the following states are 
Ll,,(s^u(2)) lowest weight states: 

k - 2 j  . 
(3.25) + ... 

I - 2 j , k - 2 j , 0 ) = : @ i j ( 0 ) : 1 0 ) = e x p  

As usual the symbol :: denotes the bosonic normal ordering, which is defined so 
that the modes [ai;n 2 0,i = 1 ,2 ,3 )  are always placed to the right of  the modes 
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[a~: n c 0, i = 1.2,3). Moreover, one can easily check that maps the state 
I-Zj, - 2 j ( k +  1) ,2j)  to 12j,2j,O), which is a Uq(Ei(2)) highest weight state. The states 
I2j. 2 j ,  0) and I - Z j ,  k - 2 j ,  0) define respectively the Fock modules F ( 2 j , 2 j ,  0) and 
F(-2 j ,  k - 2 j ,  0) .  

The currenw E*(z) and the vertex operators &(e) and &&) map a Fock module 
F ( n l ,  nz, n3) as: 

E*(z) : F(n1, nz, n3) -+ F(nl 4 2, nz 4 (k + 2) ,  n3 (3.26) 
@i(z) :  F(nl,nz,nd-+ F ( n l + 2 m , n z + m ( k + 2 ) -  j k , n 3 +  j - m )  (3.27) 
&(z) : F(nl .  nz. n3) -+ F ( ~ I  + 2m, n2 + k ( j  + 1) + m(k + 2 ) ,  n3 - j -m). (3.28) 

One can show that the action of the currents is well defined (single valued) on the Fock 
modules F(nl,n2, n3)  provided that the following condition is satisfied: 

(3.29) 
Relation (3.26) implies that the representations on which the currents are acting are the 
complete Fock spaces 

7 ( j )  = fB F(2j  + 2r, 2 j  + r(k + 2 ) ,  -r) (3.30) 

?( j )  = @ F ( - Z j + Z r , k - Z j + r ( k + Z ) , - r ) .  (3.31) 

Note, however, that the irreducible U9(s^u(2)) highest (lowest) weight representation is only 
a subspace embedded in the Fock spke F(j)(?(j))  and can be projected out through 
a BRST analysis [Ill.  We claim that the dual representation of the highest weight Fock 
space 3 ( j )  is isomorphic as a U,(S^u(Z)) module to the lowest weight Fock space ? ( j ) .  
Moreover, we make the normalization 

(3.32) 
As far as we know, there is no algebraic proof of this claim even in the classical case, i.e. 
the su(2)  conformal field theory [SI (see howevcr [ E ]  for a proof in the case gf the\riasoro 
algebra). We will nevertheless check its validity through the two-point matrix element. 

The next ingredient we need is the nction of a screening operator denoted by S(z). This 
is an operator that commutes with the currents E*(z), $(z) and @(z) up to total quantum 
derivatives. According to 113,141, here are three such operators in the case of U9(s^u(2)). 
However, for OUT purposes here we need only one of them. It is given by 

1 )  

n1 - n2 E k Z .  

rEZ 

r c z  

( 2 j , 2 j ( k  + 1) + k ,  - 2 j I Z j , Z j , O )  = 1. 

(3.33) 

with 
$(z) = Q2(k + 2, 1; I1 - k - 2, - i k ,  01 .t 12) 

~ 3 ( z ) = R 3 ( 2 , 1 ; l l - k - 2 , 0 , k + 2 1 + l z )  

Idz) ,  wJ)l = 0 
[rL(z), S ( W ) l  = 0 
[E+(Z)> S ( W ) l  = 0 

and satisfies the following commutation relations: 

(3.34) 

(3.35) 
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for some operator h(w).  The quantum derivative t V J ( z )  of a function f(z) is as usual 
defined by: 

(3.36) 

Relations (3.35) imply that the screening charge Q, which is constructed as a Jackson 
integral of the screening current, i.e., 

(3.37) 

w i 2  p = q2(k+2), commutes with Uq(s5i(2)). The Jackson integral of a function f(z) is 
defined by [4]: 

The action of the screening charges (3.37) on a Fock module F(nl ,  n2, n3)  is given by 

Because of the above properties of Q and the relations (3.27)-(3.28), one can conshct  the 
following two screened vertex operators, which map F ( j l )  to F(j2) and i ( j 2 )  respectively, 

(3.40) 

(3.41) 

. .  . .  . .  . where r = j + J I  - 32, s = j~ + j z  - j ,  and g'"(z) and $"(z) I I  are normalization functions 
that can be determined from (3.14). Note that we can also construct two more screened 
vertex operators that map %) to F(jz) and .F(jz) ,  but since we do not need them in the 
sequel we will not consider them here. 

JI 

4. N-point matrix element 

The physically interesting situation is when the vertex operators carry spin j = i, in which 
case we denote them by 4$(z) = @ ) r " ( z ) .  They map F(j1) to F(jl& f) and ?(jl Z!Z 4). 
The N-point matrix element we ae interested in is the vacuum-to-vacuum expectation value 
( O I ~ " , ( Z ~ ) C $ " " ~  - l(zn-,). . . Q$~(zz)*~~(z~)\O). Here 10) is identified with the highest 
weight vector of V(A0). This matrix element is represented by the following sum of matrix 
elements in the Fock spaces: 

(4.42) 
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where 
. I  ,=-  2 

j o  = j ,  = 0 

(4.43) 

The normalization constants g i - ,  ( z )  = g!/’”(z) I1 for i = 1 , .  . , , n - 1 have been calculated 

in 161 and g;;., ( 2 )  = &,(z) j jy i l (z) is computed from the requirement that 

~~/~(Z)~!’$AZ)IAI)  = b o )  +.... (4.44) 

iP,*(Z) = ( - z q  k ) 3/[2(11+2)1 

Here the state I&) = IO, k ,  0) is the highest weight of V(A0) which is embedded in $(O). 
We find 

(4.45) 

Note that the consistency between the relations (4.42) and (3.32) imposes the following two 
constraints: 

(4.46) 

where L denotes the total number of screening charges. This means that the only non- 
vanishing vacuum-to-vacuum matrix elements are those of an even number of vertex 
operators. Moreover, should one use a vertex operator instead of a conjugate vertex operator 
in (4.42), and the same bosonic vacuum for both a Uq(s^u(2)) representation and its dual, 
i.e., (010) = 1. then the above constraints would have become 

C ~ , = O  L = C r i = j n = - n  2 ’  I (4.47) 
i=l i=l 

Therefore by using the conjugate vertex operator we have removed one redundant integral. 
Since all the operators inside this expectation value are realized explicitly in terms of bosonic 
modes, one can easily normal order them by computing all the operator product expansions 
(OPES). The c-function that we get from these OPEs is precisely the expectation value we 
are interested in (the vacuum-to-vacuum matrix element of the normal ordered exponential 
operators is equal to 1). One should note, however, that the resulting integral expression of 
this expectation value is not always well defined because the integrands are not necessarily 
convergent due to the singularities that arise in the OPES and clearly a kind of regularization 
to remove any divergence is needed. This issue has been addressed partially ir. [6] but 
further analysis is required. 

A particular case where the above pIoblem does not arise simply because the insertion 
of screening charges is not required (indeed, if n = 2 then relation (4.46) implies that 
L = 0), and where the computation can be made more explicit, is provided by the two- 
point matrix element (Olo~iz(z)o~’2(w)10). This expectation value is represented as a 
vacuum expectation value over the Fock spaces by 



(4.49) 

i b ( z )  is given by (4.45) whereas g;"(z) can be obtained from the normalization 

g~/2(z)4+(z)l~o) = lAi)+.... (4.50) 
Using the explicit form of @ + ( z ) ,  which is given below we find 

(4.51) 

The explicit bosonic constructions of the vertex operators &(z) and &(z) that we obtain 
by solving the intertwining conditions (3.12) are given by 

112 g, ( 2 )  = -4-1. 

Note that when k = 1 the conjugate vertex operator &(z)  satisfies exactly the same OPES 
with the currents E*(z) as those of the vertex operator which is bosonized through the 
Frenkel-Jing realization of Uq(i2(2))  [15,1]. In this sense, unlike &(z), &(z) are the 
natural generalizations of the vertex operators found in the case k = 1 in 1151. In order to 



Bosonization of d y m i c a l  vertex operators 5841 

compute the above two-point matrix element we need to use, besides the OPES (4.53), the 
following OPE: 

&(z)&(w) = -gk(-zqk)-3/[2"+2" (z - wq-? 

where p = qz(k+2) and 

(4.54) 

(4.55) 

Using all the OPES given by (4.53) and (4.54), and carrying out the inkgals,  we find that 
the above two-point matrix element takes the following simple form: 

(0l@~&)@(y2(w)lO) = f(w/z)(u- @ U+ - q - ' U +  @ U-) (4.56) 

where 

(4.57) 

(4.60) 

Moreover, when we set k = 1, this two-point mauix element reduces to 

(o l '3~/2(z )@~~z(w) lo)  = ( w / z )  ' / 4  (q -zw/z ) ,  (w/z)m (U- @ U+ - q - ' U +  @I U-) (4.61) 

which is just the result found in [2] up to a similarity transformation of the R+(z) matrix 
by the transposition matrix P, which is defined by 

P(u* @ U*) = U *  @ U+ P(u* @ UT) = UT (3 Wk. (4.62) 
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5. Conclusions 

In this paper we derive two independent bosonizations of each dynamical vertex operator 
of the higher spin XXZ model. Both of them satisfy the same intertwining relations. We 
refer to one of them as the vertex operator and the other as its conjugate vertex operator. 
This terminology is due to our claim that when the former acts on the left and the latter 
acts on the right bosonic vacua, they create respectively a Uq(Gi(2)) left representation and 
its dual. We confirm the validity of this claim hough the two-point matrix elements. As a 
result, the N-point matrix elements of dynamical vertex operators do not involve redundant 
Jackson integrals coming from the insertion of screening charges. It would be interesting 
to find an algebraic proof to the above claim. Finally, it is natural to expect that the use of 
conjugate vertex operators would also simplify the computation of other important physical 
quantities like form factors (traces of products of type I and type I1 vertex operators) and 
correlation functions (traces of type I vertex operators) of local operators of the higher spin 
XXZ model. This is presently under investigation. 
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